India (English)
India (English)

Subscribe

Stay up to date with Stratasys’s latest news:

Thank you for subscribing!

We will be in touch shortly.

Hexagon’s Manufacturing Intelligence division announced a new solution with Stratasys to help manufacturers in the aerospace sector boost confidence in the performance and safety of 3D printed plastic components and compress their time to market. Through the virtual engineering and manufacturing support provided by the partnership, customers will be able to reduce a two-to-three-year timescale of designing and testing a part to six-to-nine months

Through the new partnership, users of Stratasys’ ULTEM™ 9085 filament can now use Hexagon’s Digimat material modelling software to predict how printed parts will perform. ULTEM™ 9085 filament is used to produce parts for aircraft cabin interiors, such as bracketry, pieces for cable routing, covers and duct components, all of which are required to meet stringent certification, for example around flammability and toxicity. Airbus has used FDM™ technology in these applications dating back to 2014. Some customers also use the material in cosmetic aircraft interiors, such as Diehl aviation, which has used it to create curtain headers that divide cabin classes for the Airbus A350.
In aviation, the need for the material to meet certification standards is paramount. ULTEM™ 9085 resin is a flame-retardant, high-performance thermoplastic with a high strength-to-weight ratio, excellent heat resistance and high impact strength, and possesses favorable flame, smoke, and toxicity (FST) characteristics. The material modelling software provides engineers with a validated tool for analyzing how this material will perform mechanically in a product design when printed with two compatible printers.
Using Digimat, engineers will be able to predict how parts made from ULTEM™ 9085 filament may behave when made using approved Stratasys printers. This is made possible through a highly accurate virtual material model jointly developed by the two companies through physical testing that includes detailed information about the material’s internal microstructure. The software’s process simulation capabilities help manufacturers avoid defects such as the delineation of warpage of a part and analyze the print time and material cost for the proprietary printer toolpaths of these machines to achieve an optimal result.

web fdm antero esd header b 2
Aerospace

Related Content

Automotive inspection fixture 3D printed with Stratasys F3300 FDM Printer

Omega Reduces Tooling Inventory with F3300 Modular Paint Fixtures

Omega Tool Corp leverages Stratasys F3300 and ULTEM™ 9085 to build modular, heat-resistant paint fixtures. Learn how 3D printing improved efficiency and reduced tooling weight.

View more

PolyJet vs Vat 3D Printing in Dental Labs | Stratasys Whitepaper

Discover how PolyJet outperforms vat-based 3D printing for dental labs. This expert-authored whitepaper compares efficiency, labor savings, part quality, and ROI for lab managers.

View more
polyjet-vs-vat-dental-3d-printing-whitepaper

How the Robert Dental Laboratory Transformed Prosthetics with TrueDent™

Discover how Robert Dental Laboratory increased denture production by 75% and cut turnaround times using TrueDent and J5 DentaJet. More comfort, precision, and ROI in just 12 months.

View more
Automotive inspection fixture 3D printed with Stratasys F3300 FDM Printer

Omega Tool Corp leverages Stratasys F3300 and ULTEM™ 9085 to build modular, heat-resistant paint fixtures. Learn how 3D printing improved efficiency and reduced tooling weight.

Discover how PolyJet outperforms vat-based 3D printing for dental labs. This expert-authored whitepaper compares efficiency, labor savings, part quality, and ROI for lab managers.

polyjet-vs-vat-dental-3d-printing-whitepaper

Discover how Robert Dental Laboratory increased denture production by 75% and cut turnaround times using TrueDent and J5 DentaJet. More comfort, precision, and ROI in just 12 months.