Cardiac applications of 3D printed patient-specific models (PSMs) include surgical training, complex procedural planning, and the creation or refinement of cardiac devices. As structural heart interventions become increasingly complex, the ability to effectively model patient-specific geometry, as well as the interaction of devices within and around that geometry, becomes even more valuable to advance surgical interventions. Until now, the focus of PolyJet™ 3D printing technology and other traditional anatomical modeling methods has been on achieving precise external anatomical geometry and appearance. The next frontier in 3D printed PSMs is the simulation of the biomechanical properties of human tissue.
Medtronic 3D printed myocardium.
Perfecting surgical skills with Tissue Matrix


To replicate the physiological response of native cardiac tissue including vessel walls, chamber walls, and valve leaflets, Stratasys studied the mechanical behavior of each structure in collaboration with medical device manufacturers, world-class research institutions, hospitals and medical personnel. Findings from these studies were used to develop software and materials to simulate those properties. Scientists and engineers from Medtronic, a global leader in medical device manufacturing, conducted an independent third-party comparison of the Digital Anatomy myocardium materials to porcine cardiac tissue. The following summarizes the findings and presents implications for future work in material development.
Stratasys PolyJet J750 Digital Anatomy printer.
Perfecting surgical skills with Tissue Matrix


The mechanical properties of porcine myocardium were compared to those from a wide spectrum of 3D printed myocardium material blends (Table 1). Porcine myocardium was chosen as the baseline for comparison because of its similarity to human tissue, availability, and the precedent for its use in cardiac device preclinical testing. All samples were printed on the Stratasys J750™ Digital Anatomy™3D printer.
Download the case study